Modelling river flow in cold and ungauged regions: a review of the purposes, methods, and challenges
نویسندگان
چکیده
River flow forecasting models assist in the understanding, predicting, monitoring, and managing of issues related to surface-water resources, such as water quality deterioration flooding, or developing adaptation strategies cope with climate change increasing demand. This review presents an overview current research status progress river-flow forecasting, focusing on cold climates ungauged locations. River-flow regions represents a challenge because natural processes that occur within catchments vary greatly both seasonally annually. variability, which highly depends climatic topo-geomorphological characteristics basin, translates into increased model uncertainty substantial limitation when attempting forecast river regions, are often poorly gauged ungauged. To address this limitation, “Predictions Ungauged Basins” initiative offers variety studies improve performance by adopting regionalization, spatial calibration, interpolation, regression approaches. Process-based demonstrate significant improvement including remote-sensing data replicate derive complex hydrological processes. Empirical models, utilize observed formulate graphical solution, unlike mathematical require formulating relationships between processes, also implemented most recent developments machine learning, showing exceptional accuracy. Although process-based provide wide understanding watershed hydrology, unavailable, expensive, time-consuming collect. They generate numerous calibration parameters, resulting computationally demanding methods operate. using empirical reduces number parameters but could produce biased results insufficient variables available explain physical mechanisms watershed’s hydrology. Moreover, be potentially sensitive validation dataset selection. In review, Canadian primarily selected highlight some efforts may necessary other similar including: (i) coping limited availability through regionalization methods; (ii) providing user-friendly interfaces; (iii) advancing structure; (iv) universal method for transferring parameters; (v) standardizing selection; (vi) integrating models.
منابع مشابه
data mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولthe effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus
از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...
15 صفحه اولthe investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
the survey of the virtual higher education in iran and the ways of its development and improvement
این پژوهش با هدف "بررسی وضعیت موجود آموزش عالی مجازی در ایران و راههای توسعه و ارتقای آن " و با روش توصیفی-تحلیلی و پیمایشی صورت پذیرفته است. بررسی اسنادو مدارک موجود در زمینه آموزش مجازی نشان داد تعداد دانشجویان و مقاطع تحصیلی و رشته محل های دوره های الکترونیکی چندان مطلوب نبوده و از نظر کیفی نیز وضعیت شاخص خدمات آموزشی اساتید و وضعیت شبکه اینترنت در محیط آموزش مجازی نامطلوب است.
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Environmental Reviews
سال: 2022
ISSN: ['1181-8700', '1208-6053']
DOI: https://doi.org/10.1139/er-2021-0043